Infiltration into fractured bedrock

Salve, Rohit and Ghezzehei, Teamrat A. and Jones, Robert

Water Resources Research, vol. 44(1) , 2008.

Keywords

Infiltration, fractures, rock

Abstract

One potential consequence of global climate change and rapid changes in land use is an increased risk of flooding. Proper understanding of floodwater infiltration thus becomes a crucial component of our preparedness to meet the environmental challenges of projected climate change. In this paper, we present the results of a long‐term infiltration experiment performed on fractured ash flow tuff. Water was released from a 3 × 4 m2 infiltration plot (divided into 12 square subplots) with a head of ∼0.04 m, over a period of ∼800 days. This experiment revealed peculiar infiltration patterns not amenable to current infiltration models, which were originally developed for infiltration into soils over a short duration. In particular, we observed that in part of the infiltration plot, the infiltration rate abruptly increased a few weeks into the infiltration tests. We suggest that these anomalies result from increases in fracture permeability during infiltration, which may be caused by swelling of clay fillings and/or erosion of infill debris. Interaction of the infiltration water with subsurface natural cavities (lithophysal cavities) could also contribute to such anomalies. This paper provides a conceptual model that partly describes the observed infiltration patterns in fractured rock and highlights some of the pitfalls associated with direct extension of soil infiltration models to fractured rock over a long period.