Decomposition of distinct organic matter pools is regulated by moisture status in structured wetland soils

Arnold, Chelsea and Berhe, Asmeret Asefaw and Ghezzehei, Teamrat A.

Soil Biology and Biochemistry, vol. 81, pp. 28-37 , 2015.


CO2 flux, Soil respiration, Hydrology, Meadows, Climate extremes, Soil structure


A new method was developed to measure soil consolidation by capillary suction in organic soils. This method differs from previous methods of measuring soil consolidation in that no external load is utilized and only the forces generated via capillary suction consolidate the soil matrix. This limits the degree of consolidation that can occur, but gives a more realistic ecological perspective on the response of organic soils to desiccation in the field. This new method combines the principles behind a traditional triaxial cell (for measurements of volume change), a pressure plate apparatus, (to facilitate drainage by capillary suction), and the permeameter, (to measure saturated hydraulic conductivity), and allows for simultaneous desaturation of the soil while monitoring desiccation induced volume change in the soil. This method also enables detection of historic limit of dryness. The historic limit of dryness is a novel concept that is unique to soils that have never experienced drying since their formation. It is fundamentally equivalent to the pre-compression stress of externally loaded soils. This method is particularly important for forecasting structural and hydrologic changes that may occur in soils that were formed in very wet regimes (e.g., wet meadows at the foot of persistent snow packs and permafrost peats) as they respond to a changing climate.